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J. Giemez and C. Mart
Departamento de Bica Aplicada, Universidad de Cantabria, E-39005 Santander, Spain

M. A. Matias
Fisica Tewrica, Facultad de Ciencias, Universidad de Salamanca, E-37008 Salamanca, Spain
(Received 22 July 1996

The aim of the present work is to analyze the approach to the asymptotic synchronized state of two different
methods of coupling nonlinear systems exhibiting chaotic behavior through driving, namely, the Pecora-Carroll
method[Phys. Rev. Lett64, 821(1990] and a recently introduced modification to this metfiBdys. Rev. E
52, R2145(1995]. The stability of the different connections can be discussed in terms of the corresponding
transverse Lyapunov exponents. In addition, further information can be obtained by studying the local stability
of the dynamics of the differences between the two coupled systems. The main behaviors found for these
systems are illustrated by using suitable modeg4.063-651X97)03801-4

PACS numbdss): 05.45+b

[. INTRODUCTION information to be transmitted. One should note, however,
that some recent studi¢&1] have shown that more sophis-
Many situations can be represented in terms of coupleticated masking techniques should be used because otherwise
nonlinear oscillator$1,2] in scientific areas such as optics, the transmitted signal would be easily unmasked by using the
communications, condensed-matter physics, chemical readeterministic properties of a chaotic signal.
tions, and biology. Studies on these systems show that a There exist several possibilities for linking chaotic sys-
collection of oscillators may become synchronized to thetems so that they become synchronized. Thus one can con-
same frequency and phase if the strength of the couplingect them by using linear coupling, as initially suggested by
exceeds a certain threshold value. On the other hand, marfujisaka and Yamadgb] and implemented in practice by a
phenomena occurring in nonequilibrium systems exhibit anumber of authors, using both mutual and unidirectional cou-
dependence on spatial degrees of freedom. These systems plieg [12—14. In this case it is guaranteed that if one couples
formally modeled through partial differential equations, all the variables there is some threshold value for the cou-
which yield an infinite-dimensional problem, e.g., when ana-pling such that one gets synchronized behayibs] (al-
lyzed in terms of a Fourier series. As this problem is quitethough the practical determination of this threshold may be
intractable, a common approximation has been to study aubtle[15]). Another possibility is to have a drive-response
discrete collection of coupled systems. The study of the coneouple of systems so that a signal from the drive is intro-
ditions under which these periodic oscillators synchronizeduced into the respongé]. To use such a technique in the
has aroused much interest in recent yg&is while more field of secure communications one needs to design a chaotic
general systems also have been considptéd filter, which can be obtained by replacing the response sys-
At first sight it might seem that chaotic systems shouldtem by a cascade of two chaotic systef8$. These two
not be good candidates for this synchronization behavior becascaded response systems can be designed in some circum-
cause one of the hallmarks of deterministic chaos is the destances in a compact way, as shown in RE¥s16]. For a
pendence of this kind of system on the initial conditions.partial list of other experimental settings and theoretical
This property implies that two trajectories that differ by a studies in which chaotic synchronization has been studied
tiny amount will become completely uncorrelated after a cersee Refs[17-24]; synchronization has also shown its use-
tain amount of time has passed. Thus the theoreftifeind  fulness in the field of chaos contr[®5].
later practica[6,7] demonstration of synchronization in cha-  Another context in which chaotic synchronization may be
otic systems, if coupled in an appropriate way, might appeainteresting is related to the fact that coupled systems have a
to be contradictory. Synchronized behavior implies that theéhigher dimensionality than the corresponding isolated cha-
dynamics of the coupled system takes place on an invariamtic systems. Some behaviors have been already found in the
submanifold of phase space called the synchronization mancase of two coupled systems, such as the existence of riddled
fold. The stability condition for this behavior to happen is basins[26] and on-off intermittencyf27]. These behaviors
that perturbations transverse to the invariant manifold musare associated with the so-called blowout bifurcatip2f),
die off exponentially. in which a change in the stability of perturbations transverse
One of the possible practical uses of chaotic synchronizato the invariant manifold makes the systdiiow outfrom
tion is in the field of secure communicatioh8—10]. The the low-dimensional invariant manifold to the whole phase
idea is to mask the information-bearing signal to be transmitspace. In the first case one also needs some symmetry to be
ted with a chaotic signal that exhibits broadband featurespresent in the system such that two invariant manifolds co-
This is an alternative to more classical noise-masking methexist. It might happen that other behaviors are found for
ods, in which one uses a purely stochastic signal to mask therrangements with more chaotic systems. Another possible
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use of coupled systems is in the synthesis of new chaotipound system collapses onto an invariant manifold in the
behaviors from known low-dimensional ongz9]. global phase space of the coupled systems called the syn-
In recent work[30] we have suggested a method thatchronization manifold. The dimension of this manifold is
allows one to design chaotic filters that achieve this result irthat of the response system minus the dimension of the driv-
a single connection in a more systematic fashion, namely, bing signal if one deals with the PC methf8l, while in the
injecting the driving signal at a precise place of the responsease of the modified methd@0] this dimension is identical
evolution equations. This method can be useful in the desigto that of both the drive and response systems. In the present
of complex networks composed out of chaotic uriid], study we shall consider just the case that the synchronization
which may be interconnected in different ways, including themanifold is obtained from th&ivial synchronization condi-
situation in which one considers neurdd2], while its use-  tjon x’ =x, with x=f(x) andx’ =f(x’,x) the drive and re-
fulness in an experimental setting of Chua’s circuits has beegponse dynamical systems, respectively, although it is pos-
recently showri33]. If one can get a chaotic filter by means siple to define synchronization in a more general s¢ade
of just one of such connections, a network of nonlinear sysnpotice also that we are considering the case of homogeneous
tems might act as a more powerful information processingjriving, i.e., the case in which the two dynamical systems are
device. o identical and are defined by the same parameters, although it
The aim of the present contribution is to perform a de-js also possible to consider the case in which the parameters
tailed study of the synchronization behavior of the Pecoragre different(see, e.g.[6,35,3§).
Carroll method[6] and of the modification of this method  The stability condition for synchronization can be studied
introduced in Ref[30]. The synchronization condition is as- by considering the fate of perturbations that bring the system
sociated with the asymptotic stability of the synchronizedgytside the synchronization manifold. At a local level this
state. Instead, here we wish to characterize the way in whicBan be done by studying the time evolution of small pertur-
one approaches this synchronized state and the different pogations that are transverse to the synchronization manifold,
sible behaviors that may arise from two coupled systems;e. by performing a linear stability analysis of these pertur-

illustrating them with appropriate examples. bations. This analysis will yield a linear equation of the form
The basic tool for these studies will be a linear stability
analysis of the difference dynamics between the drive and X' —x= Sx=Z 8x+ O((5%)?) 1)

response systems. As the corresponding matrix contains, in

general, a few nonconstant coefficients that are themselvggnere the relevant information about the synchronization be-
chaotic, ie., rap|dl)_/ varying S|gnals, an approximation will havior of the system is contained in the matfix
be considered. This will consist of replacing the instanta- Now we shall discuss the form of the evolution matrix
neous time-dependent coefficients, which are the system for transverse perturbations both in the case of the original
variables, of the_correspo_ndln_g I|ne_ar|z_eq problem by theipc method6] and in the case of the modified method intro-
mean values. This approximation will fail in some cases, bujyced in Ref[30]. First of all, it is useful to notice that in the
in some other cases it will allow one to obtain further useful.ase that the two systems are not connected, i.e., in the case
mformatlc_)n about the local behavior of the approach to thgnat the response evolves independerglys identical to the
synchronized state. _ Jacobian of the chaotic flow,= 9f/ 9x. The structure of the
The plgn (.)f the present paper is as follows. ”? Sec. I1 they mairix differs in the original PC method and in the modi-
synchronization methods to be analyzed are discussed, tQaq case. In this work we shall consider three-dimensional
gether with a detailed study of their stability at a local 'evel'dissipative dynamical systems that are driven by one-
Then, Sec. Il considers the study of the generic behaviorgimensional signals. This implies that the dimension of the
followed by systems connected by using both the Pecoragynchronization manifold will be 2 in the case of the PC
Carroll method and the method introduced in R&0] in method and 3 in the case of the modified method.
terms of the corresponding stability analysis. Finally, Sec. IV |, the case of the PC methdd is obtained by deleting

gathers the main conclusions stemming from the presefne row and one column from the Jacobian of the flow

work. dflax. The deleted row corresponds to derivatives of the

component of the flow that corresponds to the driving signal,

while the deleted column corresponds to derivatives with

respect to the driving signal, e.g., if the driving signalis
Now we shall analyze two different connection methodsthen one would delete the second row and the second col-

that are based on the unidirectional injection of a signal proumn. Instead, in the case of the modified methdd] Z is

duced by the first systerfurive) into the second systefne-  obtained by setting to zero those entriesifhox that corre-

sponse In the case of the Pecora-Carr@hC) method|[6], spond to the term in the evolution equations in which the

the driving is done in such a way that the driving signal isdriving signal is introduced; see below.

common between the drive and response systems, i.e., the Solving the eigenvalue problem in E(L) allows one to

dynamical evolution of this signal is suppressed in the rewrite the following expression for the solutiofi37]:

sponse. On the other hand, the modified method introduced

in Ref.[30] differs in that the driving signal is not common SX(t)~ ox(0)exp(tZ) = ox(0) Texp(tA) T 1, 2

between the two systems, entering, instead, at a particular

place of the response evolution equatigesee Sec. Il for provided that the coefficients are constant, wh&res a di-

some practical examplgs agonal eigenvalue matrix in the case tAas symmetric and
Synchronization implies that the dynamics of the com-the eigenvalues are real and distinct, and this allows a sim-

IIl. METHOD
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pler determination of expif). Otherwise, if some eigenvalue mean values will probably work well in the case where a
is complex or repeated will be factorized in Jordan boxes. time-dependent coefficient appearsaiior d, as the fact that
T is a matrix that putZ in this diagonal or more complex their contribution is squared makes it that they will probably
form and has the eigenvectofsr generalizeceigenvectors ~ not exhibit wild oscillations that imply a change of sign in
of Z as columns. the argument of the square root. This situation, which is
However, the most usual situation will be that the matrix@ssociated with a null value of the argument of the square
Z, obtained by deleting one row and one column from theroot, will be more likely in the case whete or c is time
Jacobian or setting to zero one of the elements of the lattefependent.
will have some time-dependent coefficient that arises from ©One could think of using a more exact way of knowing
the fact thaff is nonlinear. In addition, this term will have a Whether the eigenvalues will be real or complex, namely, by
very complicated form as it represents a chaotic signal, anfetermining them explicitly. This could be implemented by
one can have access to the know|edge of the asymptotic bgamembering that the Jacobian matrix is needed to obtain
havior of the system only by obtaining the Lyapunov spectra-yapunov exponents. Thus one could diagonalize it at de-
for variations transverse to the invariant manifold, which issired times, knowing explicitly the form of the eigenvalues.
an ergodic property of the systef88]. This allows one to However, we devised the procedure outlined above based on
write the following expression, valid if one wishes to deter-the use of mean values as a simple strategy that could afford

mine the fate of small transverse perturbations in an averaggome useful information at a low cost. One could argue that
sense: obtaining the eigenvalues at each time is as time consuming

as integrating the corresponding differential equations and
OX(t)~ 6x(0)exp(tA’), (3) characterizing the way in which the system approaches syn-
chronization.
whereA' is a diagonal matrix containing the Lyapunov ex- Regarding the modified method introduced in R&0],
ponents, which in the present work have been obtained bthe analysis is slightly more complex than in the case of the
employing the algorithm introduced by Wadt al.[39]. Ex-  PC method, due to the fact that the response system, and thus
pressed in these terms, the task of determining stable comso the transverse manifold, is now three dimensional, and
nections from the viewpoint of synchronization amounts toobtaining closed formulas for the eigenvalues is more in-
finding submatrices, in the case of the PC method, or settingolved. However, in some cases one may perform useful
to zero some matrix elements, in the case of the modifiedelationships with the two-dimensional situations discussed
method, of the Jacobian such that all the transverséor the PC method. The idea of the method is to introduce the
Lyapunov exponents are negative. driving signal at a precise point of the evolution equations of
While the knowledge that one has of synchronizationthe response. The result is that the response system is able to
through Eq.(3) for systems whose linear approximation of regenerate the input signal and thus one is able to design a
the flow has nonconstarithaotig coefficients is quite lim- chaotic filter with a single connection, instead of using a
ited because one has access only to the asymptotic behavieagscade, as happens with the PC method.
there is a procedure, albeit approximate, of having access to We shall illustrate the method with the Lorenz system
more information about the system. This method consists df40]. One of the possible connections consists in the evolu-
replacing the instantaneous values of the corresponding ch#éen equations for the response
otic signals by their corresponding averaged values. Al- ] ]
though the approximation is exact for systems in one dimen- X;=0(y—X1), Y1=RX—Yy1—X1Z;, Z;=X;y1—bz,
sion, it is not valid for higher-dimensional systems. The N (6)

roblem appears with pairs of complex-conjugate eigenval- . . . . .
Ees as itpri)s possiblep that a rap?dly varyj/ingg coe?ficientWhere the convention of underlining the driving signal in the

changes the character of the discriminant from real to imagif€SPONse system has been followed and the role of this signal

nary or vice versa, while the averaging procedure will just®S, & time—forcing. parameter is also st'ressed. Or!e can also

yield one of the two possibilities. write the expression for the time evolution of the differences
We shall apply these ideas first to the case of the p@etween the two systems

method. In this cas& is two dimensional,

OX -0 0 0 OX
a b) @ o= sy || (R-2) -1 —x oy —7e
¢ d 57 y x —b||\
from which one obtains the expression for the two eigenval- (7)

ues, , L .
This expression is analogous to the error growth equation

1 for the Lorenz system, except for the fact that in Thmatrix
Mo=5l(atd)x V(a—d)*+4bc]. (5 a0 entry appears at the same place in which the driving

signal entergreplacingo in this casg¢ In this example the

The analysis of this expression indicates that one can safefigenvalues are given by

ensure2 that the two eigenval_ues are rez_sll in t_he case where (0+M)[N2+(1+b)\+x2+b]=0, @)
(a—d)“>4Dbc, as the expression will be linear ia{d). In

other cases, one can only diagnose that the replacement khich has the solutions
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1 TABLE I. Compendium of the different observed behaviors for
N=—o0, )\213=§[ —(b+1)*=(b+1)2—4(x*+b)]. Sprott[42] (represented with the corresponding letéorenz[40],
9 Raossler [45], Van der Pol-Duffing(VPD) [41], and Chua[46]
©) models connected by means of the Pecora-Carroll mdipbdhe

. . . different behaviors obtained by driving with the y, andz vari-
This particular example clearly illustrates the fact that theypies are defined as follow&M for monotonic synchronization

analytical solution cannot be found in general due to theenhavior(see Sec. Il A 1; SO for oscillating synchronization be-
presence of the variables y, or z in the expressions for the havior (see Sec. Il A 2 SN for nonmonotonic and nonoscillating
eigenvalues. Thus one needs to calculate the averaged couynchronization behavidsee Sec. Ill A3 MC for constant shifted
terpart of the eigenvalues by introducing the correspondingnarginal synchronization behavitsee Sec. Ill BL; MS for sized
transverse Lyapunov exponerfeLEs). The numerical val- marginal synchronization behavitsee Sec. Il B2 MO for oscil-
ues for the TLEs of this system are—(.80,—1.87, latory marginal synchronization behavi¢see Sec. IlIBE and,
—10.00), implying that the connection is stable from thefinally, NS for nonsynchronization behavigsee Sec. Ill .

point of view of synchronization. If one approximates the
eigenvalues\, 3 in Eq. (9 by using the averaged value Systemx PC y PC zPC TLEs
(x?)~60, the result i\, 3= —(b+1)/2= —11/6= — 1.833,

which agrees quite well with the numerically determined val- MC NS MS (0,-1), (-0.00-1.00
. . . : MC NS MS (0,-1), (-0.00,-1.00
ues. The fact that this agreement is not perfect implies th
5 - o ” NS NS MO (0.00,0.00
(x*) exhibits some local deviations that make positive theE MC NS NS (0.00,-1.00
argument of the square root in E®). ey
F NS SN NS (-0.17,-0.83
G SN NS NS (-0.14,-0.86
. RESULTS H NS SN NS (-0.17,-0.83
The aim of the present section is to discuss the different NS MC MO (0.00,-1.09, (0.00,0.00
possible behaviors that have been uncovered regarding the NS MO MC (0.00,0.09, (0.00,-2.00
approach to the synchronized state of coupled chaotic sy NS NS SN (-0.11,-1.06
tems. Most of these behaviors are found to be quite generi¢, MC MO NS (0.00,0.09, (0.00,-1.00
in the sense that they appeared in a quite systematic searchlh MC MO MC (0.00,-1.09, (0.00,0.09, (0.00,-1.00
a number of models exhibiting chaos for both the PecoraN NS MC MO (0.00,-2.00, (0.00,0.00
Carroll synchronization method and the modification dis-O NS NS NS
cussed in Sec. Il. As already announced, the analysis is f& MC NS SN (0,-0.39, (-0.19,-0.20
cilitated in some cases because the linearized evolutioQ NS NS MC (0.00,-1.00
matrix is only a function of constant coefficients and thusr NS NS NS
one does not need to perform the asymptotic analysis ims NS MC SO (0.00,-1.00, (-0.50,-0.50
plicit in the evaluation of the Lyapunov exponents. However, orenz SN SM  MS (-1.80,-1.87,(-2.67,-10.0, (0.00,-11.0
this is not true in many of the most interesting cases, alRgssler NS SN NS (0.0,-4.5

though it would be very useful to get the kind of local infor- ypp 50 SN Ns
mation provided by the eigenvalues and eigenvectors of thg
linearized matrix, while giving results that are consistent
with the asymptotic Lyapunov analysifor the PC method ) ]
this is the case in which this nonconstant coefficiera isr ~ Variables of the system. If all the eigenvalues are real, the
din Eq.(4)]. approach to the synchronized state will be monotonic, while
In other cases where the averaging procedure is not cofl tere are two complex-conjugate eigenvalues the approach
rect, one has to take advantage only of the asymptotic analy® Synchronization will be oscillatory. In the case of the PC
sis 'As usual from the information that one obtains. the ethod, in Table | the connections are labeled accordingly to

; . . S the different behaviors to be reported in the rest of this sec-
imaginary part informs about whether the approximation :on. Table Il summarizes the information regarding the con-

ections that are synchronizing for the modified method of
' 3Ref.[30]. In this case the same labeling has not been used, as

tive, allows one to define the following behaviors: synchro-g, netimes the behaviors to be described cannot happen for
nization, marginal synchronization, and nonsynchronizationy,e tree variables. For example, it may happen that two of the

respectively, permitting this to classify the observed behavgigenvalues of are complex conjugate, but at least one of
iors. Except when stated otherwise, the examples presentgfem will always be real, and the three variables cannot dis-

in this section have been obtained by application of theyay the behavior described in Sec. 11 A2.
modified method introduced in Rgf30].

(-0.49,-0.5}, (-0.012,-49.85
SO MC NS (-0.50,-0.50, (-0.00,-2.488

1. Monotonic synchronization

A. Synchronization behavior To illustrate this case we shall consider the example of

This group of systems is characterized by the commorWo Lorenz systemf40] connected through the PC method,
feature that the real part of the eigenvaluegZdé negative, SO that the response ysdriven, i.e., the response system is
and we shall consider several subcases depending on thgfined as,
imaginary part of these eigenvalues and also taking into ac- - .
count whether or not they depend on at least one of the X1=0o(y=X1), Z=Xy-bz, (10



128 J. GUIEMEZ, C. MARTIN, AND M. A. MATI AS 55

TABLE Il. Compendium of observed synchronization behaviorswhich has two negative real eigenvaluas=—oc and
for the modified method introduced in R¢80] for the same sys- \,=—b, implying synchronizationthe TLES numerically
tems described in Table I. Only the connections with nonpositivedetermined coincide with these valyieB this case the dif-

transverse Lyapunov spectrum are reported here. The connectioRsrences between the variables must decrease in the form
are reported explicitly by giving the altered ODE in the responseéxx(t): &(O)e—\x\t and this is what is actually observed

system. (see Fig. 1 This kind of behavior is marked by SM in Table
l.

System Connection TLEs

F y=—x+0.5 (-0.14,-0.16,-0.7D 2. Oscillating synchronization

G X=0.4X+7 (-0.17,-0.20,-0.68 An example of oscillating behavior, characterized by a

H y:XJrB.Sy (-0.14,-0.15,-0.71L pair of complex-conjugate eigenvalues, is the case of the Van

K L = (:0.14,-0.20,-0.89 der Pol-Duffing model41], in which the response system is
Z=x+0.% e written in the form

o y=x—1z (-0.061,-0.065,-0.15

Chua _ f(x) (-0.056,-0.056,-108 X1=— V(X?_ ax1—Y1), Y1=X—Y1—2Z1, Z1=fY1,

Chua y=X—-y+z (-0.50,-0.50,-2.4}3 - (12)

Chua )'(:a(x_x_f(x)) (-0.50,-50,-2.4% ) ) o

Lorenz oy (-1.80,-1.87,-10.0D which allows one to write th& matrix in the form

Lorenz Rx (-3.951,-4.04,-5.6)7 _ v(3x2— a) v 0

Lorenz —Xz (0.00,-2.67,-11.00

Rossler ay (-0.058,-0.12,-4.24 0 -1 -1] (13)

VPD y=x—y-z (-46.67, -0.49, -0.51 0 B 0

VPD —vy (-0.52, -0.5, -47.4D

from which one obtains the eigenvaluks= — v(3x%— a)

. - ] o and\, 3= —0.5% J1-4p/2. The latter eigenvalues are com-
while the stability matrix has, in this case, the form plex conjugate because the argument of the square root is
always negative. The reported TLEs are—46.67,
—0.50, —0.50) and an example of this behavior can be

OX —o 0 OX found in Fig. 2. This kind of behavior is marked with SO in
s71= y —b sz 1 (11 Table I.
20 T T T
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10 1
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L : (b)_ chronization in two Lorenz systenid0] coupled
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y (10): (a) time evolution forx of the drive,(b)
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L | - z exhibits the same type of behavior. The trans-
10 b : B verse Lyapunov spectrum is reported in Table I.
_20 | : | 1 |
20 7 T T T
- k ©)
<10 L g
0 : |
-10 i : .
20 C i : i ] !

20

[
'S
0
-
—
)
—_
=)



55 APPROACH TO THE CHAOTIC SYNCHRONIZED STATE ... 129

0.2 T T T T T
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-0.15 : . .
! | | 1 | FIG. 2. Oscillatory approach to chaotic syn-
8% - | | | | chronization in two VPD systempt1] coupled
0 1'5 i 1 b) by using the method of Ref30], the connection
: : 7 being defined in Eq(12): (a) time evolution for
0.1 ' TN I | y of the drive, (b) time evolution fory, of the
0.05 e response, andc) time evolution for the differ-
Y1 0 | encey—y,;. This behavior arises from the pres-
ence of two complex-conjugate eigenvalues in a
-0.05 | il 7 local analysis. Variable exhibits the same type
-0.1 ! . of behavior. The transverse Lyapunov spectrum
-0.15 - | . is reported in Table II.
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3. Nonmonotonic and nonoscillating synchronization in this case are, in principle, quite unexpected, it has been the

Systems exhibiting this behavior are characterized by afuPiect of a separate wofk3] (see also Ref44] for another

approach to synchronization that is neither monotonic nofPProach to this problem
oscillating. Although establishing a general rule is quite dif-
ficult for this case, one can say that this group is formed by
those systems that have a sign-changing argument for the As already noted, this situation is characterized by a zero
square-root formulgsee Sec. )| and this implies that the transverse Lyapunov exponent, which is genuine and thus
system will exhibit an alternating oscillatory behavior anddoes not appear as a result of the averaging process. The
monotonic approach to synchronization. behavior that one observes in such a situation is that one of
An example of this behavior is the case of Sprott's Fthe variables in the response system becomes synchronized

systen{42], and considering the, = —x, + 0.5y connection, With the drive, but with a constant separation. The connec-

the eigenvalues can be obtained by solving the algebraiion does not have the ability to reduce the difference be-
equation tween drive and response systems, and the separation at the

moment of the connection is preserved. Thus, in this case the
A3+ A2—\(2x—1)+1=0. (14) synchronization manifold is not given by_:x’_, but a con-
stant appears and, moreover, this condition is not unique. In
other words, what one observes in this case is
ox(t)= 6x(0).
An example of this behavior is Sprott's N system syn-
chronized by using the PC method througtdriving. The
expression for the eigenvalues is

1. Marginal constant synchronization

Considering the approximatiofx)~ —0.5, it yields the ei-

genvalues {0.21+1.23;-0.5863), while the TLEs are
(—0.14, —0.16, —0.70) (see also Fig. B This kind of be-

havior is marked by SN in Table I.

B. Marginal synchronization ANN+2)=0, (15

This situation is characterized by the fact that the highest
transverse Lyapunov exponent is zero, while it may happeim which one of the eigenvalues is identically n(8ee also
that some of the other exponents are also zero or negativ&able ). If one solves numerically the evolution equations
Several qualitatively different behaviors may arise dependfor both driver and response, it is observed that the response
ing on whether this null TLE is zero also at a local letiél  synchronizes except for a constant quantity, which is related
the correspondin@ has a zero eigenvaly®r only on the to the separation of the two systems in phase space at the
average. The behavior will also differ if there are either onemoment in which the connection staftee Fig. 4. This kind
or two TLEs that are null. As some of the behaviors obtainedf behavior is marked by MC in Table 1.
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FIG. 3. Approach to chaotic synchronization
behavior that is oscillatory, although not purely
sinusoidal, for two Sprott F systerfé5] coupled
by using the method of Ref30], the connection
being defined by, = —x, +0.5y: (a) time evolu-
tion for x of the drive,(b) time evolution forx; of
the response, ang) time evolution for the dif-
ferencex—x;. Variablesy andz exhibit the same
type of behavior. The transverse Lyapunov spec-
trum is reported in Table II.

FIG. 4. Marginal constant shifted synchroni-
zation for two N Sprott systenigl2] coupled by
using the PC metho@6] and driving with vari-
abley: (a) time evolution forx of the drive,(b)
time evolution forx, of the response for one ini-
tial condition yielding synchronized behavior,
and (c) time evolution for the difference—x;.
The transverse Lyapunov spectrum is reported in
Table 1.
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) FIG. 5. Sized synchronization behavior for
B two Lorenz system$40] coupled by using the
— method of Ref[30], the connection being defined
by y;=Rx;—Yy;—X;2: (a) time evolution forx of
the drive, (b) time evolution forx,; of the re-
sponse for one initial condition yielding synchro-
nized behavior, andc) time evolution forx; of
-10 - n the response for one initial condition yielding an-

215 + : - tisynchronized behavior. Variable exhibits the
L | | | same type of behavior. The transverse Lyapunov
_%8 T ; | | spectrum is reported in Table II.

0 4 8 12 16 20

2. Sized synchronization more detailed study This kind of behavior is marked by MS

The other possibility when one has a single zero transi" Table I.
verse Lyapunov exponent is that, while the system takes this _ _ o
value on average, at the local level it is alternatively positive 3. Marginal oscillatory synchronization
and negative. In this case the observed behavior is quite dif- This case is characterized by the fact tHabas a pair of
ferent to the situation described in Sec. Il B 1 and consists irtomplex-conjugate eigenvalues with zero real part. This im-
that the response exhibits the same qualitative behavior gslies that the difference between the drive and response will
the drive, but with different sizéand sometimes with differ- change in an oscillatory fashion with a frequency that will
ent symmetry. This different size is related to the differ- depend on the imaginary part and with constant amplitude
ences in the variables referred to the moment in which thehat will be related to the difference at the moment in which
connection starts. the connection starts. As an example we shall consider
_An example of this behavior is the Lorenz systed],  gprott's | system[42] with connectiony;=x,+2z, which
in - which one drives with variablez the term yig|ds the expression for the eigenvalues
y1=R¥ —Y;—X,z. In addition, this system has some sym-
metry, namely, the original system is unchanged by the (A +1)(A%+0.2 =0, (16)
transformation X,y,z)—(—X,—V,z), and this symmetry is
also present in the response system, as it is not destroyed By which one can obtain the eigenvaluas=—1 and
the connection. Thus, one has two different invariant mani» , .=0+0.45, implying that the two TLEs are zero, both
folds, which are characterized by,(=x, y1=y,z;=2) and  |ocally and asymptoticallysee Fig. 6. This kind of behavior
(X1=—X, y1=—Y, 2;=2). The result is that a subset of all js marked by MO in Table I.
possible initial conditions in phase space finishes having the
first type of behavioksynchronizatiojy while the rest of the
conditions finish having the second type of behavemti-
synchronization while the sizes of theattractors in the When at least one of the TLESs is positive, synchronization
drive and response systems are different. This is related tdoes not occur. In certain cases, the eigenvectors correspond-
the null TLE, which avoids any reduction in the distanceing to the different transverse modes do not mix the two
between the two systentsee Fig. 5 and also Re¢#3] fora  directions(there are two independent subsystemsd it is

C. Nonsynchronization behavior



132 J. GUIEMEZ, C. MARTIN, AND M. A. MATI AS 55

(a)

W
[
T

FIG. 6. Marginal oscillatory approach to syn-
chronization for two Sprott J systempA2]
coupled by using the method of R¢6] through
y: (@) time evolution forx of the drive,(b) time
evolution for x; of the response, an¢t) time
evolution for the difference&—x,. Variablez ex-
hibits the same type of behavior. The transverse
Lyapunov spectrum is reported in Table I.
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possible to observe that one variable synchronizes and thesults in the eigenvalues \;=x—c~-c and
other one does not. In Table | connections with at least ona, ;=[a* a?—4]/2, while the reported TLEs are
TLE positive are indicated by NS. (—4.42, 0.10, 0.10).

1. Monotonic behavior 3. Nonmonotonic and nonoscillatory behavior

This type of behavior is characterized by at least one posi- This case occurs when one has a strongly modulating
tive TLE, whose corresponding eigenvaligbtained from a  term in the real and/or the imaginary part of the eigenvalues
local analysigis real. This is the case of Sprott's K system of Z, resulting in a behavior with strong local variations. An
[42] with the connectiorz; =x+0.3z;. For these two cases example of this type of behavior is Sprott's H modép]

the Z matrix takes the form with the connectiory; =x+0.5y;, and this yields th& ma-
trix
OX y x -1 OX 0 -1 2z
57 0O 0 03 6z 1 0 -1

which has the solutions;=0.5 and\, ;= (1*=y1+82)/2,
which can be analyzed by decomposing it into the2ma-  wherez~ — 0.4. In practice, most of the connections studied
trix obtained for the PCz connection for this system, the in the present work fit in this kind of behavior.
TLEs are (-0.11, —1.06) and a (0.3 \) term, yielding an

unstable mode. IV. CONCLUSION

The present paper has been devoted to the detailed study
of the approach to synchronization for homogeneous driving

This type of behavior is characterized by a pair ofpetween chaotic systems by using two different procedures:
complex-conjugate eigenvalues whose real part is positiveirst, the method introduced by Pecora and Carf®]] and
implying that the overall behavior will be characterized by then the modification recently introduced in RES0]. Syn-
an exponential amplification of small differences, but with achronization is associated with a reduction of the dynamics
sinusoidal modulation. This is thg case of thesBler model  of the system to an invariant manifold of the global phase
[45] (see Fig. 7 with connectionz;=b+z;(x—c), which  space. Stability is analyzed by studying the fate of small

2. Oscillatory behavior
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4 of the drive,(b) time evolution forx; of the re-
sponse, andc) time evolution for the difference

J X—X;. The transverse Lyapunov spectrum is
(—4.42,0.10, 0.10).
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' . FIG. 7. Oscillatory nonsynchronizing behav-
| | ior in two Ressler system$45] coupled in the
: form z,=b+z,(x—c): (a) time evolution forx
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perturbations transverse to the invariant manifold. In the first Deserving special attention is the case in which the two
case the dimension of the transverse space is that of theupled chaotic systems exhibit a marginal behavior from
original chaotic system minus that of the driving signalthe synchronization point of view, this behavior happening
which is common between the two coupled systems, while irwhen the highest transverse Lyapunov exponent is @&e
the case of the modified method the dimension of this transalso[43,44)). Several possibilities may arise, depending on
verse space coincides with that of an isolated chaotic systennhether the corresponding direction is marginal at all times
In the examples considered in this work these dimensions amr only on average. In the first case the drive and response
2 and 3, respectively, implying that the analysis of the lattewill exhibit a constant difference as a function of time. The
method is somewhat more involved. behavior that one obtains in the second case is very interest-
The analysis of the linearized evolution of the differencesing, because what one observes for the drive and response
between two coupled chaotic systems may offer a lot of usesystem is that the corresponding attractor has the same
ful information about the behavior of the coupled systemsshape, its size being different. If there are more than one
from the synchronization point of view. This analysis has thetransverse Lyapunov exponents that are null, then the differ-
difficulty that, due to the presence of nonlinear terms in theences between the variables will vary in an oscillatory fash-
evolution equations, the corresponding linear evolution equaion.
tions have nonconstant coefficients. What one usually does The kind of systematic study that has been carried out in
in this case is consider the average contribution of the linthe present work leads us to wonder about how common
earized flow along a very long trajectory, i.e., the Lyapunovsynchronization in chaotic systems is. The first conclusion is
spectrum. For the purpose of synchronization one needs tihat synchronization appears to be closely related to the de-
determine the transverse Lyapunov exponents, which givgree of nonlinearity of the models that are coupled. Thus the
information about the evolution of small perturbations trans-models introduced in Refl42] are the simplest possible
verse to the invariant synchronization manifold. In addition,ones, from the point of view of the available nonlinearities,
one may try to obtain some further local information aboutand one finds only six stable synchronizing connections out
the behavior of the coupled systems in small times, e.g., bgf a total of an average of six possible connections for each
using average values instead of the instantaneous ones, alstem times twenty-three systems. Instead, the more sophis-
though this procedure will fail in some cases. The knowledgeicated models, such as the Loref#0], Van der Pol-
of the real part of the eigenvalues of this evolution matrixDuffing [41], and Chua[46] systems, typically have more
gives information about the ability to synchronize thethan one synchronizing connection each system.
coupled chaotic systems, while, instead, the imaginary partis As a final remark, coupling chaotic dynamical systems
relevant to knowing whether this approach will be mono-offers the possibility of building higher-dimensional dynami-
tonic or oscillatory. cal systems. If the coupling is such that the systems synchro-
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