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Approach to the chaotic synchronized state of some driving methods
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The aim of the present work is to analyze the approach to the asymptotic synchronized state of two different
methods of coupling nonlinear systems exhibiting chaotic behavior through driving, namely, the Pecora-Carroll
method@Phys. Rev. Lett.64, 821~1990!# and a recently introduced modification to this method@Phys. Rev. E
52, R2145~1995!#. The stability of the different connections can be discussed in terms of the corresponding
transverse Lyapunov exponents. In addition, further information can be obtained by studying the local stability
of the dynamics of the differences between the two coupled systems. The main behaviors found for these
systems are illustrated by using suitable models.@S1063-651X~97!03801-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Many situations can be represented in terms of coup
nonlinear oscillators@1,2# in scientific areas such as optic
communications, condensed-matter physics, chemical r
tions, and biology. Studies on these systems show th
collection of oscillators may become synchronized to
same frequency and phase if the strength of the coup
exceeds a certain threshold value. On the other hand, m
phenomena occurring in nonequilibrium systems exhibi
dependence on spatial degrees of freedom. These system
formally modeled through partial differential equation
which yield an infinite-dimensional problem, e.g., when an
lyzed in terms of a Fourier series. As this problem is qu
intractable, a common approximation has been to stud
discrete collection of coupled systems. The study of the c
ditions under which these periodic oscillators synchron
has aroused much interest in recent years@3#, while more
general systems also have been considered@4#.

At first sight it might seem that chaotic systems sho
not be good candidates for this synchronization behavior
cause one of the hallmarks of deterministic chaos is the
pendence of this kind of system on the initial condition
This property implies that two trajectories that differ by
tiny amount will become completely uncorrelated after a c
tain amount of time has passed. Thus the theoretical@5# and
later practical@6,7# demonstration of synchronization in ch
otic systems, if coupled in an appropriate way, might app
to be contradictory. Synchronized behavior implies that
dynamics of the coupled system takes place on an invar
submanifold of phase space called the synchronization m
fold. The stability condition for this behavior to happen
that perturbations transverse to the invariant manifold m
die off exponentially.

One of the possible practical uses of chaotic synchron
tion is in the field of secure communications@8–10#. The
idea is to mask the information-bearing signal to be transm
ted with a chaotic signal that exhibits broadband featu
This is an alternative to more classical noise-masking m
ods, in which one uses a purely stochastic signal to mask
551063-651X/97/55~1!/124~11!/$10.00
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information to be transmitted. One should note, howev
that some recent studies@11# have shown that more sophis
ticated masking techniques should be used because othe
the transmitted signal would be easily unmasked by using
deterministic properties of a chaotic signal.

There exist several possibilities for linking chaotic sy
tems so that they become synchronized. Thus one can
nect them by using linear coupling, as initially suggested
Fujisaka and Yamada@5# and implemented in practice by
number of authors, using both mutual and unidirectional c
pling @12–14#. In this case it is guaranteed that if one coup
all the variables there is some threshold value for the c
pling such that one gets synchronized behavior@13# ~al-
though the practical determination of this threshold may
subtle@15#!. Another possibility is to have a drive-respon
couple of systems so that a signal from the drive is int
duced into the response@6#. To use such a technique in th
field of secure communications one needs to design a cha
filter, which can be obtained by replacing the response s
tem by a cascade of two chaotic systems@8#. These two
cascaded response systems can be designed in some ci
stances in a compact way, as shown in Refs.@9,16#. For a
partial list of other experimental settings and theoreti
studies in which chaotic synchronization has been stud
see Refs.@17–24#; synchronization has also shown its us
fulness in the field of chaos control@25#.

Another context in which chaotic synchronization may
interesting is related to the fact that coupled systems ha
higher dimensionality than the corresponding isolated c
otic systems. Some behaviors have been already found in
case of two coupled systems, such as the existence of rid
basins@26# and on-off intermittency@27#. These behaviors
are associated with the so-called blowout bifurcations@28#,
in which a change in the stability of perturbations transve
to the invariant manifold makes the systemblow out from
the low-dimensional invariant manifold to the whole pha
space. In the first case one also needs some symmetry
present in the system such that two invariant manifolds
exist. It might happen that other behaviors are found
arrangements with more chaotic systems. Another poss
124 © 1997 The American Physical Society
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55 125APPROACH TO THE CHAOTIC SYNCHRONIZED STATE . . .
use of coupled systems is in the synthesis of new cha
behaviors from known low-dimensional ones@29#.

In recent work @30# we have suggested a method th
allows one to design chaotic filters that achieve this resul
a single connection in a more systematic fashion, namely
injecting the driving signal at a precise place of the respo
evolution equations. This method can be useful in the des
of complex networks composed out of chaotic units@31#,
which may be interconnected in different ways, including t
situation in which one considers neurons@32#, while its use-
fulness in an experimental setting of Chua’s circuits has b
recently shown@33#. If one can get a chaotic filter by mean
of just one of such connections, a network of nonlinear s
tems might act as a more powerful information process
device.

The aim of the present contribution is to perform a d
tailed study of the synchronization behavior of the Peco
Carroll method@6# and of the modification of this metho
introduced in Ref.@30#. The synchronization condition is as
sociated with the asymptotic stability of the synchroniz
state. Instead, here we wish to characterize the way in w
one approaches this synchronized state and the different
sible behaviors that may arise from two coupled syste
illustrating them with appropriate examples.

The basic tool for these studies will be a linear stabil
analysis of the difference dynamics between the drive
response systems. As the corresponding matrix contain
general, a few nonconstant coefficients that are themse
chaotic, i.e., rapidly varying signals, an approximation w
be considered. This will consist of replacing the instan
neous time-dependent coefficients, which are the sys
variables, of the corresponding linearized problem by th
mean values. This approximation will fail in some cases,
in some other cases it will allow one to obtain further use
information about the local behavior of the approach to
synchronized state.

The plan of the present paper is as follows. In Sec. II
synchronization methods to be analyzed are discussed
gether with a detailed study of their stability at a local lev
Then, Sec. III considers the study of the generic behav
followed by systems connected by using both the Pec
Carroll method and the method introduced in Ref.@30# in
terms of the corresponding stability analysis. Finally, Sec.
gathers the main conclusions stemming from the pres
work.

II. METHOD

Now we shall analyze two different connection metho
that are based on the unidirectional injection of a signal p
duced by the first system~drive! into the second system~re-
sponse!. In the case of the Pecora-Carroll~PC! method@6#,
the driving is done in such a way that the driving signal
common between the drive and response systems, i.e.
dynamical evolution of this signal is suppressed in the
sponse. On the other hand, the modified method introdu
in Ref. @30# differs in that the driving signal is not commo
between the two systems, entering, instead, at a partic
place of the response evolution equations~see Sec. III for
some practical examples!.

Synchronization implies that the dynamics of the co
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pound system collapses onto an invariant manifold in
global phase space of the coupled systems called the
chronization manifold. The dimension of this manifold
that of the response system minus the dimension of the d
ing signal if one deals with the PC method@6#, while in the
case of the modified method@30# this dimension is identica
to that of both the drive and response systems. In the pre
study we shall consider just the case that the synchroniza
manifold is obtained from thetrivial synchronization condi-
tion x85x, with ẋ5f(x) and ẋ85f(x8,x) the drive and re-
sponse dynamical systems, respectively, although it is p
sible to define synchronization in a more general sense@34#.
Notice also that we are considering the case of homogene
driving, i.e., the case in which the two dynamical systems
identical and are defined by the same parameters, althou
is also possible to consider the case in which the parame
are different~see, e.g.,@6,35,36#!.

The stability condition for synchronization can be studi
by considering the fate of perturbations that bring the sys
outside the synchronization manifold. At a local level th
can be done by studying the time evolution of small pert
bations that are transverse to the synchronization manif
i.e., by performing a linear stability analysis of these pert
bations. This analysis will yield a linear equation of the for

ẋ82 ẋ5 ḋx5Zdx1O„~dx!2…, ~1!

where the relevant information about the synchronization
havior of the system is contained in the matrixZ.

Now we shall discuss the form of the evolution matr
Z for transverse perturbations both in the case of the orig
PC method@6# and in the case of the modified method intr
duced in Ref.@30#. First of all, it is useful to notice that in the
case that the two systems are not connected, i.e., in the
that the response evolves independently,Z is identical to the
Jacobian of the chaotic flow:Zu5]f/]x. The structure of the
Z matrix differs in the original PC method and in the mod
fied case. In this work we shall consider three-dimensio
dissipative dynamical systems that are driven by o
dimensional signals. This implies that the dimension of
synchronization manifold will be 2 in the case of the P
method and 3 in the case of the modified method.

In the case of the PC methodZ is obtained by deleting
one row and one column from the Jacobian of the fl
]f/]x. The deleted row corresponds to derivatives of t
component of the flow that corresponds to the driving sign
while the deleted column corresponds to derivatives w
respect to the driving signal, e.g., if the driving signal isy,
then one would delete the second row and the second
umn. Instead, in the case of the modified method@30# Z is
obtained by setting to zero those entries in]f/]x that corre-
spond to the term in the evolution equations in which t
driving signal is introduced; see below.

Solving the eigenvalue problem in Eq.~1! allows one to
write the following expression for the solutions@37#:

dx~ t !'dx~0!exp~ tZ!5dx„0…Texp~ tL!T21, ~2!

provided that the coefficients are constant, whereL is a di-
agonal eigenvalue matrix in the case thatZ is symmetric and
the eigenvalues are real and distinct, and this allows a s
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pler determination of exp(tZ). Otherwise, if some eigenvalu
is complex or repeatedL will be factorized in Jordan boxes
T is a matrix that putsZ in this diagonal or more comple
form and has the eigenvectors~or generalizedeigenvectors!
of Z as columns.

However, the most usual situation will be that the mat
Z, obtained by deleting one row and one column from
Jacobian or setting to zero one of the elements of the la
will have some time-dependent coefficient that arises fr
the fact thatf is nonlinear. In addition, this term will have
very complicated form as it represents a chaotic signal,
one can have access to the knowledge of the asymptotic
havior of the system only by obtaining the Lyapunov spec
for variations transverse to the invariant manifold, which
an ergodic property of the system@38#. This allows one to
write the following expression, valid if one wishes to dete
mine the fate of small transverse perturbations in an ave
sense:

dx~ t !'dx~0!exp~ tL8!, ~3!

whereL8 is a diagonal matrix containing the Lyapunov e
ponents, which in the present work have been obtained
employing the algorithm introduced by Wolfet al. @39#. Ex-
pressed in these terms, the task of determining stable
nections from the viewpoint of synchronization amounts
finding submatrices, in the case of the PC method, or set
to zero some matrix elements, in the case of the modi
method, of the Jacobian such that all the transve
Lyapunov exponents are negative.

While the knowledge that one has of synchronizat
through Eq.~3! for systems whose linear approximation
the flow has nonconstant~chaotic! coefficients is quite lim-
ited because one has access only to the asymptotic beha
there is a procedure, albeit approximate, of having acces
more information about the system. This method consist
replacing the instantaneous values of the corresponding
otic signals by their corresponding averaged values.
though the approximation is exact for systems in one dim
sion, it is not valid for higher-dimensional systems. T
problem appears with pairs of complex-conjugate eigen
ues, as it is possible that a rapidly varying coefficie
changes the character of the discriminant from real to ima
nary or vice versa, while the averaging procedure will ju
yield one of the two possibilities.

We shall apply these ideas first to the case of the
method. In this caseZ is two dimensional,

S a b

c dD , ~4!

from which one obtains the expression for the two eigenv
ues,

l1,25
1

2
@~a1d!6A~a2d!214 bc#. ~5!

The analysis of this expression indicates that one can sa
ensure that the two eigenvalues are real in the case w
(a2d)2@4 bc, as the expression will be linear in (a2d). In
other cases, one can only diagnose that the replaceme
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mean values will probably work well in the case where
time-dependent coefficient appears ina or d, as the fact that
their contribution is squared makes it that they will probab
not exhibit wild oscillations that imply a change of sign
the argument of the square root. This situation, which
associated with a null value of the argument of the squ
root, will be more likely in the case whereb or c is time
dependent.

One could think of using a more exact way of knowin
whether the eigenvalues will be real or complex, namely,
determining them explicitly. This could be implemented
remembering that the Jacobian matrix is needed to ob
Lyapunov exponents. Thus one could diagonalize it at
sired times, knowing explicitly the form of the eigenvalue
However, we devised the procedure outlined above base
the use of mean values as a simple strategy that could af
some useful information at a low cost. One could argue t
obtaining the eigenvalues at each time is as time consum
as integrating the corresponding differential equations
characterizing the way in which the system approaches s
chronization.

Regarding the modified method introduced in Ref.@30#,
the analysis is slightly more complex than in the case of
PC method, due to the fact that the response system, and
also the transverse manifold, is now three dimensional,
obtaining closed formulas for the eigenvalues is more
volved. However, in some cases one may perform us
relationships with the two-dimensional situations discus
for the PC method. The idea of the method is to introduce
driving signal at a precise point of the evolution equations
the response. The result is that the response system is ab
regenerate the input signal and thus one is able to desi
chaotic filter with a single connection, instead of using
cascade, as happens with the PC method.

We shall illustrate the method with the Lorenz syste
@40#. One of the possible connections consists in the evo
tion equations for the response

ẋ15s~y2x1!, ẏ15Rx12y12x1z1, ż15x1y12bz1 ,
~6!

where the convention of underlining the driving signal in t
response system has been followed and the role of this si
as a time-forcing parameter is also stressed. One can
write the expression for the time evolution of the differenc
between the two systems

ė5S d ẋ

d ẏ

d ż
D 5S 2s 0 0

~R2z! 21 2x

y x 2b
D S dx

dy

dzD 5Ze.

~7!

This expression is analogous to the error growth equa
for the Lorenz system, except for the fact that in theZ matrix
a 0 entry appears at the same place in which the driv
signal enters~replacings in this case!. In this example the
eigenvalues are given by

~s1l!@l21~11b!l1x21b#50, ~8!

which has the solutions
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55 127APPROACH TO THE CHAOTIC SYNCHRONIZED STATE . . .
l152s, l2,35
1

2
@2~b11!6A~b11!224~x21b!#.

~9!

This particular example clearly illustrates the fact that
analytical solution cannot be found in general due to
presence of the variablesx, y, or z in the expressions for the
eigenvalues. Thus one needs to calculate the averaged c
terpart of the eigenvalues by introducing the correspond
transverse Lyapunov exponents~TLEs!. The numerical val-
ues for the TLEs of this system are (21.80,21.87,
210.00), implying that the connection is stable from t
point of view of synchronization. If one approximates t
eigenvaluesl2,3 in Eq. ~9! by using the averaged valu
^x2&'60, the result isl2,352(b11)/25211/6521.833,
which agrees quite well with the numerically determined v
ues. The fact that this agreement is not perfect implies
^x2& exhibits some local deviations that make positive
argument of the square root in Eq.~9!.

III. RESULTS

The aim of the present section is to discuss the differ
possible behaviors that have been uncovered regarding
approach to the synchronized state of coupled chaotic
tems. Most of these behaviors are found to be quite gen
in the sense that they appeared in a quite systematic sear
a number of models exhibiting chaos for both the Peco
Carroll synchronization method and the modification d
cussed in Sec. II. As already announced, the analysis is
cilitated in some cases because the linearized evolu
matrix is only a function of constant coefficients and th
one does not need to perform the asymptotic analysis
plicit in the evaluation of the Lyapunov exponents. Howev
this is not true in many of the most interesting cases,
though it would be very useful to get the kind of local info
mation provided by the eigenvalues and eigenvectors of
linearized matrix, while giving results that are consiste
with the asymptotic Lyapunov analysis@for the PC method
this is the case in which this nonconstant coefficient isa or
d in Eq. ~4!#.

In other cases where the averaging procedure is not
rect, one has to take advantage only of the asymptotic an
sis. As usual, from the information that one obtains,
imaginary part informs about whether the approximation
the synchronized state will be steady or oscillatory, while
real part, depending on whether it is positive, zero, or ne
tive, allows one to define the following behaviors: synch
nization, marginal synchronization, and nonsynchronizati
respectively, permitting this to classify the observed beh
iors. Except when stated otherwise, the examples prese
in this section have been obtained by application of
modified method introduced in Ref.@30#.

A. Synchronization behavior

This group of systems is characterized by the comm
feature that the real part of the eigenvalues ofZ is negative,
and we shall consider several subcases depending on
imaginary part of these eigenvalues and also taking into
count whether or not they depend on at least one of
e
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variables of the system. If all the eigenvalues are real,
approach to the synchronized state will be monotonic, wh
if there are two complex-conjugate eigenvalues the appro
to synchronization will be oscillatory. In the case of the P
method, in Table I the connections are labeled accordingl
the different behaviors to be reported in the rest of this s
tion. Table II summarizes the information regarding the co
nections that are synchronizing for the modified method
Ref. @30#. In this case the same labeling has not been used
sometimes the behaviors to be described cannot happe
the tree variables. For example, it may happen that two of
eigenvalues ofZ are complex conjugate, but at least one
them will always be real, and the three variables cannot
play the behavior described in Sec. III A2.

1. Monotonic synchronization

To illustrate this case we shall consider the example
two Lorenz systems@40# connected through the PC metho
so that the response isy driven, i.e., the response system
defined as,

ẋ15s~y2x1!, ż15xy2bz1 , ~10!

TABLE I. Compendium of the different observed behaviors f
Sprott@42# ~represented with the corresponding letter!, Lorenz@40#,
Rössler @45#, Van der Pol–Duffing~VPD! @41#, and Chua@46#
models connected by means of the Pecora-Carroll method@6#. The
different behaviors obtained by driving with thex, y, andz vari-
ables are defined as follows:SM for monotonic synchronization
behavior~see Sec. III A 1!; SO for oscillating synchronization be
havior ~see Sec. III A 2!; SN for nonmonotonic and nonoscillating
synchronization behavior~see Sec. III A 3!; MC for constant shifted
marginal synchronization behavior~see Sec. III B 1!; MS for sized
marginal synchronization behavior~see Sec. III B 2!; MO for oscil-
latory marginal synchronization behavior~see Sec. III B 3!; and,
finally, NS for nonsynchronization behavior~see Sec. III C!.

System x PC y PC z PC TLEs

B MC NS MS ~0,-1!, ~-0.00,-1.00!
C MC NS MS ~0,-1!, ~-0.00,-1.00!
D NS NS MO ~0.00,0.00!
E MC NS NS ~0.00,-1.00!
F NS SN NS ~-0.17,-0.83!
G SN NS NS ~-0.14,-0.86!
H NS SN NS ~-0.17,-0.83!
I NS MC MO ~0.00,-1.00!, ~0.00,0.00!
J NS MO MC ~0.00,0.00!, ~0.00,-2.00!
K NS NS SN ~-0.11,-1.06!
L MC MO NS ~0.00,0.00!, ~0.00,-1.00!
M MC MO MC ~0.00,-1.00!, ~0.00,0.00!, ~0.00,-1.00!
N NS MC MO ~0.00,-2.00!, ~0.00,0.00!
O NS NS NS
P MC NS SN ~0,-0.39!, ~-0.19,-0.20!
Q NS NS MC ~0.00,-1.00!
R NS NS NS
S NS MC SO ~0.00,-1.00!, ~-0.50,-0.50!
Lorenz SN SM MS ~-1.80,-1.87!,~-2.67,-10.0!, ~0.00,-11.0!
Rössler NS SN NS ~0.0,-4.5!
VPD SO SN NS ~-0.49,-0.51!, ~-0.012,-49.85!
Chua SO MC NS ~-0.50,-0.50!, ~-0.00,-2.488!
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while the stability matrix has, in this case, the form

S d ẋ

d żD 5S 2s 0

y 2bD S dx

dzD , ~11!

TABLE II. Compendium of observed synchronization behavio
for the modified method introduced in Ref.@30# for the same sys-
tems described in Table I. Only the connections with nonposi
transverse Lyapunov spectrum are reported here. The connec
are reported explicitly by giving the altered ODE in the respon
system.

System Connection TLEs

F ẏ52x10.5y ~ -0.14,-0.16,-0.70!

G ẋ50.4x1z ~-0.17,-0.20,-0.63!

H ẏ5x10.5y ~-0.14,-0.15,-0.71!

K ż5x10.3z ~-0.14,-0.20,-0.82!

O ẏ5x2z ~-0.061,-0.065,-0.15!

Chua f (x) ~-0.056,-0.056,-10.8!
Chua ẏ5x2y1z ~-0.50,-0.50,-2.46!

Chua ẋ5a(y2x2 f (x)) ~-0.50,-50,-2.46!

Lorenz sy ~-1.80,-1.87,-10.00!
Lorenz Rx ~-3.951,-4.04,-5.67!
Lorenz 2xz ~0.00,-2.67,-11.00!
Rössler ay ~-0.058,-0.12,-4.24!
VPD ẏ5x2y2z ~-46.67, -0.49, -0.51!

VPD 2ny ~-0.52, -0.5, -47.40!
which has two negative real eigenvaluesl152s and
l252b, implying synchronization~the TLEs numerically
determined coincide with these values!. In this case the dif-
ferences between the variables must decrease in the
dx(t)5dx(0)e2ulut, and this is what is actually observe
~see Fig. 1!. This kind of behavior is marked by SM in Tabl
I.

2. Oscillating synchronization

An example of oscillating behavior, characterized by
pair of complex-conjugate eigenvalues, is the case of the
der Pol–Duffing model@41#, in which the response system
written in the form

ẋ152n~x1
32ax12y1!, ẏ15x2y12z1 , ż15by1 ,

~12!

which allows one to write theZ matrix in the form

S 2n~3x22a! n 0

0 21 21

0 b 0
D , ~13!

from which one obtains the eigenvaluesl152n(3x22a)
andl2,3520.56A124b/2. The latter eigenvalues are com
plex conjugate because the argument of the square ro
always negative. The reported TLEs are (246.67,
20.50,20.50) and an example of this behavior can
found in Fig. 2. This kind of behavior is marked with SO
Table I.

e
ns
e

-

s-
I.
FIG. 1. Monotonic approach to chaotic syn
chronization in two Lorenz systems@40# coupled
by using the Pecora-Carroll method@6# through
y ~10!: ~a! time evolution forx of the drive,~b!
time evolution for x1 of the response, and~c!
time evolution for the differencex2x1. Variable
z exhibits the same type of behavior. The tran
verse Lyapunov spectrum is reported in Table
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FIG. 2. Oscillatory approach to chaotic syn
chronization in two VPD systems@41# coupled
by using the method of Ref.@30#, the connection
being defined in Eq.~12!: ~a! time evolution for
y of the drive, ~b! time evolution fory1 of the
response, and~c! time evolution for the differ-
encey2y1. This behavior arises from the pres
ence of two complex-conjugate eigenvalues in
local analysis. Variablez exhibits the same type
of behavior. The transverse Lyapunov spectru
is reported in Table II.
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3. Nonmonotonic and nonoscillating synchronization

Systems exhibiting this behavior are characterized by
approach to synchronization that is neither monotonic
oscillating. Although establishing a general rule is quite d
ficult for this case, one can say that this group is formed
those systems that have a sign-changing argument for
square-root formula~see Sec. II!, and this implies that the
system will exhibit an alternating oscillatory behavior a
monotonic approach to synchronization.

An example of this behavior is the case of Sprott’s
system@42#, and considering theẏ152x110.5y connection,
the eigenvalues can be obtained by solving the algeb
equation

l31l22l~2x21!1150. ~14!

Considering the approximation̂x&'20.5, it yields the ei-
genvalues (20.2161.23i ;20.5863), while the TLEs are
(20.14,20.16,20.70) ~see also Fig. 3!. This kind of be-
havior is marked by SN in Table I.

B. Marginal synchronization

This situation is characterized by the fact that the high
transverse Lyapunov exponent is zero, while it may hap
that some of the other exponents are also zero or nega
Several qualitatively different behaviors may arise depe
ing on whether this null TLE is zero also at a local level~if
the correspondingZ has a zero eigenvalue! or only on the
average. The behavior will also differ if there are either o
or two TLEs that are null. As some of the behaviors obtain
n
r
-
y
he

ic

st
n
e.
-

e
d

in this case are, in principle, quite unexpected, it has been
subject of a separate work@43# ~see also Ref.@44# for another
approach to this problem!.

1. Marginal constant synchronization

As already noted, this situation is characterized by a z
transverse Lyapunov exponent, which is genuine and t
does not appear as a result of the averaging process.
behavior that one observes in such a situation is that on
the variables in the response system becomes synchron
with the drive, but with a constant separation. The conn
tion does not have the ability to reduce the difference
tween drive and response systems, and the separation a
moment of the connection is preserved. Thus, in this case
synchronization manifold is not given byx5x8, but a con-
stant appears and, moreover, this condition is not unique
other words, what one observes in this case
dx(t)5dx(0).

An example of this behavior is Sprott’s N system sy
chronized by using the PC method throughy driving. The
expression for the eigenvalues is

l~l12!50, ~15!

in which one of the eigenvalues is identically null~see also
Table I!. If one solves numerically the evolution equatio
for both driver and response, it is observed that the respo
synchronizes except for a constant quantity, which is rela
to the separation of the two systems in phase space a
moment in which the connection starts~see Fig. 4!. This kind
of behavior is marked by MC in Table I.
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FIG. 4. Marginal constant shifted synchron
zation for two N Sprott systems@42# coupled by
using the PC method@6# and driving with vari-
abley: ~a! time evolution forx of the drive,~b!
time evolution forx1 of the response for one ini
tial condition yielding synchronized behavio
and ~c! time evolution for the differencex2x1.
The transverse Lyapunov spectrum is reported
Table I.

FIG. 3. Approach to chaotic synchronizatio
behavior that is oscillatory, although not pure
sinusoidal, for two Sprott F systems@45# coupled
by using the method of Ref.@30#, the connection

being defined byẏ152x110.5y: ~a! time evolu-
tion for x of the drive,~b! time evolution forx1 of
the response, and~c! time evolution for the dif-
ferencex2x1. Variablesy andz exhibit the same
type of behavior. The transverse Lyapunov spe
trum is reported in Table II.
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FIG. 5. Sized synchronization behavior fo
two Lorenz systems@40# coupled by using the
method of Ref.@30#, the connection being define
by ẏ15Rx12y12x1z: ~a! time evolution forx of
the drive, ~b! time evolution for x1 of the re-
sponse for one initial condition yielding synchro
nized behavior, and~c! time evolution forx1 of
the response for one initial condition yielding an
tisynchronized behavior. Variabley exhibits the
same type of behavior. The transverse Lyapun
spectrum is reported in Table II.
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2. Sized synchronization

The other possibility when one has a single zero tra
verse Lyapunov exponent is that, while the system takes
value on average, at the local level it is alternatively posit
and negative. In this case the observed behavior is quite
ferent to the situation described in Sec. III B1 and consist
that the response exhibits the same qualitative behavio
the drive, but with different size~and sometimes with differ-
ent symmetry!. This different size is related to the differ
ences in the variables referred to the moment in which
connection starts.

An example of this behavior is the Lorenz system@40#,
in which one drives with variable z the term
ẏ15Rx12y12x1z. In addition, this system has some sym
metry, namely, the original system is unchanged by
transformation (x,y,z)→(2x,2y,z), and this symmetry is
also present in the response system, as it is not destroye
the connection. Thus, one has two different invariant ma
folds, which are characterized by (x15x, y15y, z15z) and
(x152x, y152y, z15z). The result is that a subset of a
possible initial conditions in phase space finishes having
first type of behavior~synchronization!, while the rest of the
conditions finish having the second type of behavior~anti-
synchronization!, while the sizes of theattractors in the
drive and response systems are different. This is relate
the null TLE, which avoids any reduction in the distan
between the two systems~see Fig. 5 and also Ref.@43# for a
-
is
e
if-
in
as

e

e

by
i-

e

to

more detailed study!. This kind of behavior is marked by MS
in Table I.

3. Marginal oscillatory synchronization

This case is characterized by the fact thatZ has a pair of
complex-conjugate eigenvalues with zero real part. This
plies that the difference between the drive and response
change in an oscillatory fashion with a frequency that w
depend on the imaginary part and with constant amplitu
that will be related to the difference at the moment in whi
the connection starts. As an example we shall cons
Sprott’s I system@42# with connection ẏ15x11z, which
yields the expression for the eigenvalues

~l11!~l210.2!50, ~16!

for which one can obtain the eigenvaluesl1521 and
l2,35060.45i , implying that the two TLEs are zero, bot
locally and asymptotically~see Fig. 6!. This kind of behavior
is marked by MO in Table I.

C. Nonsynchronization behavior

When at least one of the TLEs is positive, synchronizat
does not occur. In certain cases, the eigenvectors corresp
ing to the different transverse modes do not mix the t
directions~there are two independent subsystems! and it is
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FIG. 6. Marginal oscillatory approach to syn
chronization for two Sprott J systems@42#
coupled by using the method of Ref.@6# through
y: ~a! time evolution forx of the drive,~b! time
evolution for x1 of the response, and~c! time
evolution for the differencex2x1. Variablez ex-
hibits the same type of behavior. The transver
Lyapunov spectrum is reported in Table I.
t
on

os

m
s

e

o
iv
by
a

ting
ues
n

ed

tudy
ing
res:

ics
se
all
possible to observe that one variable synchronizes and
other one does not. In Table I connections with at least
TLE positive are indicated by NS.

1. Monotonic behavior

This type of behavior is characterized by at least one p
tive TLE, whose corresponding eigenvalue~obtained from a
local analysis! is real. This is the case of Sprott’s K syste
@42# with the connectionż15x10.3z1. For these two case
theZ matrix takes the form

S d ẋ

d ẏ

d ż
D 5S y x 21

1 21 0

0 0 0.3D S dx

dy

dzD , ~17!

which can be analyzed by decomposing it into the 232 ma-
trix obtained for the PCz connection for this system, th
TLEs are (20.11,21.06) and a (0.32l) term, yielding an
unstable mode.

2. Oscillatory behavior

This type of behavior is characterized by a pair
complex-conjugate eigenvalues whose real part is posit
implying that the overall behavior will be characterized
an exponential amplification of small differences, but with
sinusoidal modulation. This is the case of the Ro¨ssler model
@45# ~see Fig. 7! with connectionż15b1z1(x2c), which
he
e

i-

f
e,

results in the eigenvalues l15x2c'2c and
l2,35@a6Aa224#/2, while the reported TLEs are
(24.42, 0.10, 0.10).

3. Nonmonotonic and nonoscillatory behavior

This case occurs when one has a strongly modula
term in the real and/or the imaginary part of the eigenval
of Z, resulting in a behavior with strong local variations. A
example of this type of behavior is Sprott’s H model@42#
with the connectionẏ15x10.5y1, and this yields theZ ma-
trix

S 0 21 2z

0 0.5 0

1 0 21
D , ~18!

which has the solutionsl150.5 andl2,35(16A118 z)/2,
wherez̄'20.4. In practice, most of the connections studi
in the present work fit in this kind of behavior.

IV. CONCLUSION

The present paper has been devoted to the detailed s
of the approach to synchronization for homogeneous driv
between chaotic systems by using two different procedu
first, the method introduced by Pecora and Carroll@6#, and
then the modification recently introduced in Ref.@30#. Syn-
chronization is associated with a reduction of the dynam
of the system to an invariant manifold of the global pha
space. Stability is analyzed by studying the fate of sm
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FIG. 7. Oscillatory nonsynchronizing behav
ior in two Rössler systems@45# coupled in the

form ż15b1z1(x2c): ~a! time evolution forx
of the drive,~b! time evolution forx1 of the re-
sponse, and~c! time evolution for the difference
x2x1. The transverse Lyapunov spectrum
(24.42, 0.10, 0.10).
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perturbations transverse to the invariant manifold. In the fi
case the dimension of the transverse space is that of
original chaotic system minus that of the driving sign
which is common between the two coupled systems, whil
the case of the modified method the dimension of this tra
verse space coincides with that of an isolated chaotic sys
In the examples considered in this work these dimensions
2 and 3, respectively, implying that the analysis of the la
method is somewhat more involved.

The analysis of the linearized evolution of the differenc
between two coupled chaotic systems may offer a lot of u
ful information about the behavior of the coupled system
from the synchronization point of view. This analysis has
difficulty that, due to the presence of nonlinear terms in
evolution equations, the corresponding linear evolution eq
tions have nonconstant coefficients. What one usually d
in this case is consider the average contribution of the
earized flow along a very long trajectory, i.e., the Lyapun
spectrum. For the purpose of synchronization one need
determine the transverse Lyapunov exponents, which g
information about the evolution of small perturbations tra
verse to the invariant synchronization manifold. In additio
one may try to obtain some further local information abo
the behavior of the coupled systems in small times, e.g.
using average values instead of the instantaneous one
though this procedure will fail in some cases. The knowled
of the real part of the eigenvalues of this evolution mat
gives information about the ability to synchronize t
coupled chaotic systems, while, instead, the imaginary pa
relevant to knowing whether this approach will be mon
tonic or oscillatory.
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Deserving special attention is the case in which the t
coupled chaotic systems exhibit a marginal behavior fr
the synchronization point of view, this behavior happeni
when the highest transverse Lyapunov exponent is zero~see
also @43,44#!. Several possibilities may arise, depending
whether the corresponding direction is marginal at all tim
or only on average. In the first case the drive and respo
will exhibit a constant difference as a function of time. Th
behavior that one obtains in the second case is very inte
ing, because what one observes for the drive and resp
system is that the corresponding attractor has the s
shape, its size being different. If there are more than
transverse Lyapunov exponents that are null, then the dif
ences between the variables will vary in an oscillatory fa
ion.

The kind of systematic study that has been carried ou
the present work leads us to wonder about how comm
synchronization in chaotic systems is. The first conclusion
that synchronization appears to be closely related to the
gree of nonlinearity of the models that are coupled. Thus
models introduced in Ref.@42# are the simplest possibl
ones, from the point of view of the available nonlinearitie
and one finds only six stable synchronizing connections
of a total of an average of six possible connections for e
system times twenty-three systems. Instead, the more so
ticated models, such as the Lorenz@40#, Van der Pol–
Duffing @41#, and Chua@46# systems, typically have more
than one synchronizing connection each system.

As a final remark, coupling chaotic dynamical system
offers the possibility of building higher-dimensional dynam
cal systems. If the coupling is such that the systems sync
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nize, one gets an effectively lower-dimensional descript
of the system as the system dynamics reduces to an inva
manifold of the system. Instead, if the systems do not s
chronize one would get a hyperchaotic dynamical sys
whose dynamical behavior can be quite rich.
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